
Introduction to unit testing
with Java, Eclipse and Subversion

Table of Contents
 1. About Unit Tests... 2

 1.1. Introduction.. 2
 1.2. Unit tests frameworks.. 3

 2. A first test class.. 4
 2.1. Problem description... 4
 2.2. Code organisation... 4
 2.3. Test implementation.. 6
 2.4. Managing the project versions with Subversion.. 10

 3. Stubs.. 14
 3.1. A second package... 14

 4. Test suites... 17
 4.1. Grouping unit tests in suites.. 17

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 1/18

 1. About Unit Tests

 1.1. Introduction

Unit testing is a key technique in today's agile software development. Unit tests are written by
the developer during the coding activity, and thus pertain in the white box testing category:

Unit tests have following characteristics:

they are automatic (do not require human intervention during the tests)

they are reproducible
they are independent from each other

their result is either OK (all tests have been successful), or NOK (at least one test failed,
in this case details are given to the user about the failure(s))

may be combined in test suites to allow non-regression testing during the development

This document will present progressively concrete unit testing cases, using:

Java as programming language (http://www.java.com/),

Eclipse as Development Environment (http://www.eclipse.org/)

Subversion as version control system (http://subversion.tigris.org/), its GUI for Windows
TortoiseSVN (http://www.eclipse.org/), and its Subclipse plugin for Eclipse
(http://subclipse.tigris.org/).

Enterprise Architect as UML Modeling tool
(http://www.sparxsystems.com/products/ea.html). .

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 2/18

input output

Black box testing

input output

White box testing

http://www.java.com/
http://www.sparxsystems.com/products/ea.html
http://subclipse.tigris.org/
http://www.eclipse.org/
http://subversion.tigris.org/
http://www.eclipse.org/

 1.2. Unit tests frameworks

JUnit is the original Java library for unit testing, ad such frameworks exist nowadays for many
programming languages. They all aim at following the software design:

test1() and test2() are methods of the concrete test class ConcreteTestCase, one
such class being developed per nominal application class (TestClass). They contain code
testing the services of this application class.

Note that the “test-first” practice recommend writing those test methods before writing the
nominal code, because it helps to keep the design simple from the start (see for example the
article of Ron Jeffries http://www.xprogramming.com/xpmag/testFirstGuidelines.htm).

Besides the test methods, the developer may define for the concrete test case a setUp()
method, that will be called be the framework before each test method, as well as a
tearDown() method, called after each test.

In JUnit, the default implementation of runTest() uses the Java reflexion to invoke methods
with names beginning with “test”; runTest() needs being redefined only if you want to
override this behavior.

The run() template method calls setUp(), runTest(), tearDown(), what in turns
implies concretely the execution of:

setUp(), test1(), tearDown()
setUp(), test2(), tearDown()
...

The number of tests executed and their result are recorded in the TestResult class.

A last important point in this design is the TestSuite notion, that allows calling recursively the
run() methods on TestCase classes, allowing to call globally all the tests defined.

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 3/18

Testing client

run(TestResult)
setUp()
runTest()
tearDown()

TestCase

fName

setUp()
runTest()
tearDown()
test1()
test2()

ConcreteTestCase

action()

TestedClass

setUp()
runTest()
tearDown()

TestResult

runTest()
test1()
or
test2()

Test

run(TestResult)
addTest(Test)

TestSuite

fTests

forall test in fTests
 test.run(TestResult)

http://www.xprogramming.com/xpmag/testFirstGuidelines.htm

 2. A first test class

 2.1. Problem description

Let us first think of a Person class, having a birth date as attribute, and an age calculation
method:

 2.2. Code organisation

This class will be placed in the people package, itself in the
src.main.java.floconsult.unittests packages:

Note that the directory structure follows the recommendation of the project building tool Maven
(http://maven.apache.org/maven-1.x/reference/conventions.html).

Using the JUnit enabled menus of Eclipse, we may directly create the associated test case (in
the parallel package tree under src\test):

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 4/18

Person
birthDate : Date

getAge() : int

people

PreconditionNotRespectedException

utils

{ pre:
 self.birthDate->exists()
 post:
 result = date(today) – self.birthdate }

<<throws>>

http://maven.apache.org/maven-1.x/reference/conventions.html

Here we chose to place the test class in the test part, and not to redefine the setUp() and
tearDown() methods (the other data is left as proposed by Eclipse):

We thus have the following directory organisation in our code directory, which at the same

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 5/18

time allows to separate the test classes from the main ones, while placing them in the same
package from the “java” level (here java.floconsult.unittests.people).

 2.3. Test implementation

To run our first tests, we first have to define the tests we think of:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 6/18

If person has a birth date such as his/her age would be 30
→ calculation correct

If no birth date is set
→ the method should return an exception

Person
birthDate : Date

getAge() : int

people

PersonTest

Then, to allow compiling the test code, let us define the skeleton (without method
implementation) of the Person class:

Running the PersonTest unit tests:

We have (as awaited as the getAgeInYears()) method is not yet implemented) both tests
fail:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 7/18

Service offered by the Person class
(not yet implemented)

We are ready now for implementing the method:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 8/18

What allow us to see our first JUnit green bar, indicating the success of our 2 tests:

Before detailing the notion of test suites and of stubs, let us take a look at the version
management of our project files using Subversion (SVN):

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 9/18

 2.4. Managing the project versions with Subversion

Considering we place the project in Subversion before implementing the method:

Then the user has to select the SVN repository to use (here file:///C:/localSvnRepo/),
and confirm the project import into this repository. This done, the project may be seen in the
SVN Repository view in Eclipse:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 10/18

SVN version number of
the file in the repository

file:///c:/localSvnRepo

Or directly in the Package Explorer view:

After the successful run of the tests, it is a good rule of thumb to commit the modifications in
the SVN repository:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 11/18

DB icon indicates the Subversion link
(becomes a star when file modified

and not yet committed in Subversion)

As soon as a file is managed under Subversion, we may look at its history in Subversion:

Selecting 2 versions, we may compare the files:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 12/18

This to demonstrate the very nice integration of Subversion in Eclipse (using the plug-in given
in #1.1.Introduction).

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 13/18

 3. Stubs

 3.1. A second package

Let us now consider a package “company”, with an Employee, being a Person, and having a
salary category, which, allows to calculate his/her salary:

The calculation of the salary needs a class implementing the interface SalaryMgr, which is
not detailed here.

To unit test the Employee class, we cannot afford having a dependence on an external
unknown class, and we thus have to introduce an implementation of SalaryMgr, having a
perfectly predictable behaviour. This is a “Stub” as represented hereunder:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 14/18

Person
birthDate : Date

getAge() : int

people

Employee
salaryCategory : int = [1,2,3]

getCurrentSalary() : int

company

getSalaryForCategory(cat) : int
<<uses>>

SalaryMgr
<<interface>>EmployeeTest

Employee
salaryCategory : int = [1,2,3]

getCurrentSalary() : int

company

getSalaryForCategory(cat) : int
<<uses>>

SalaryMgrStub
<<stub>>

getSalaryForCategory(cat) : int

{ if cat=1 (JUNIOR) return 1000
 if cat=2 (SENIOR) return 3000
 if cat=3 (MANAGER) return 5000}

SalaryMgr
<<interface>>EmployeeTest

We will place this stub in the test part of the project directory, in the company package:

What allow us to test the getCurrentSalary() method of the Employee class:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 15/18

This Stub is instantiated in the SetUp() method of the EmployeeTest class (recall that this
method is called before each test execution), and passed to the getCurrentSalary()
method to allow testing it:

Obviously, in this very simple example, Employee does not add any behaviour to the one of
the SalaryMgr, but this technique of stubbing is applicable to any situation were we want our
classes, and thus our unit tests, to be independent of external (unpredictable) behaviours.

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 16/18

 4. Test suites

 4.1. Grouping unit tests in suites

A last important notion in this introduction to unit testing with Java and Eclipse is the notion of
test suites.

In the previous paragraphs, we successively tested the Person class of the people package
(2 tests), and the Employee class of the company package (3 tests).

As said in the introduction, unit tests may be combined in suites, allowing to (re-)execute all
the existing unit tests, and to verify that the system did not “regress” following modifications or
additions in the code.

Again, Eclipse offers a wizard to ease the creation of test suites. First, let us create the test
suites at the people level:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 17/18

This suite class executes all the test classes in the package:

We similarly create a test suite at the company level, and then a “parent” test suite at the
higher level, which call the lower-level test suites.

Executing this suite runs the 5 tests at once:

Introduction to Unit Testing with Java, Eclipse and SubVersion
© 2006 FloConsult SPRL 18/18

	 1. About Unit Tests
	 1.1. Introduction
	 1.2. Unit tests frameworks

	 2. A first test class
	 2.1. Problem description
	 2.2. Code organisation
	 2.3. Test implementation
	 2.4. Managing the project versions with Subversion

	 3. Stubs
	 3.1. A second package

	 4. Test suites
	 4.1. Grouping unit tests in suites

